Tuesday 24 April 2018

Código do sistema de negociação automatizado


Código do sistema de negociação automatizado
Esta página é patrocinada pela Wisdom Trading, sistemas de negociação de futuros e corretor de mercado global. Eles oferecem sistemas de negociação todos codificados para seus clientes e executam Trading Blox, o que representa um grande pedaço do código neste site.
Biblioteca de códigos.
O código comercial do sistema é divulgado em várias postagens, pode ser uma boa idéia consolidá-las em um só lugar (aqui) antes que tudo se torne um pouco complicado!
Eu também escrevo mensalmente para a revista Análise Técnica de Stocks e Commodities (TASC) na seção Dicas de comerciantes (principalmente Código Trading Blox).
Encontre tudo abaixo para sua leitura:
& # 8212; Revista TASC Traders & # 8217; Dicas & # 8212;
TASC Traders Tips (abril de 2018): indicador de tendência de preço de volume modificado no Excel.
No artigo "Indicador de tendência do preço do volume modificado" nesta edição, o autor David Hawkins discute uma modificação do indicador de tendência do preço do volume (VPT), ​​já baseado no indicador de volume no balanço desenvolvido originalmente por Joseph Granville.
Em Suavização do Bollinger% b & # 8221; artigo, o autor Sylvain Vervoort explica como remover o ruído do indicador tradicional de% b, usado para identificar pontos de viragem claros e divergências.
Em "Trading Indexes With The Hull Moving Average" nessa edição, o autor Max Gardner explica como usar a média móvel de Hull para o tempo de mercado a longo prazo.
Teste de Bootstrap para análise de significância estatística de back-testing.
Implementação do teste bootstrap conforme descrito no livro de David Aronson # 8217: Análise Técnica Baseada em Evidência (link amazônico)
& # 8212; CSI Unfair Advantage API & # 8212;
RetrieveBackAdjustedContract2 API documentação da função.
Guia de referência sobre esta função essencial, tirada do documento CSI API.
Recuperar contrato de futuros ajustado de volta.
Algum código de exemplo em C # usando a API para acessar uma das funções mais importantes para recuperar qualquer contrato de futuros com qualquer tipo de ajuste de retorno oferecido pela CSI.
Extrator de Contratos Individuais CSI.
Uma utilidade para extrair contratos individuais do banco de dados Advantage Unfair da CSI & # 8217; em arquivos de texto simples.
& # 8212; Trading Blox & # 8212;
Variação no clássico filtro de portfólio MACD, usando o indicador Moving Median em vez da média móvel padrão para a média rápida.
Indicador Vortex Original.
Implementação do indicador Vortex.
Indicadores Vortex e AVX aprimorados e sistema AVX.
O indicador de Vortex original teve uma falha (manobra de abertura para mercados não-Forex) e não usou uma média móvel exponencial para suavização. Esta é a minha versão melhorada com um sistema de reversão básico que o usa para entradas / saídas.
link para publicação original | link para arquivo zip (contendo: Vortex Indicator & # 038; arquivo de bloco auxiliar AVX (tbx), bloco de saída de entrada AVX (tbx), sistema AVX (tbs))
Implementa um filtro que permite rejeitar / aceitar negócios com base no nível de volatilidade em comparação com os níveis históricos.
Implementação Walk-Forward do modelo de espaço de alavancagem de Vince & # 8217; s.
Utiliza o pacote LSPM R (por Josh Ulrich) em uma abordagem progressiva para permitir uma metodologia de teste de teste adaptativo.
O e-ratio é uma maneira prática de avaliar a borda de um componente específico de um sistema sem ter que testar o sistema como um todo (ou seja, a borda do sinal de entrada apenas).
link para publicação original (inclui todos os trechos de código e lógica necessários)
& # 8212; TradersStudio & # 8212;
cálculo do e-ratio para o sistema Donchian Channel Breakout.
Este código contém o código genérico necessário para calcular o e-ratio, bem como uma implementação para aplicar o cálculo a um sinal Donchian Channel Breakout.
link para publicação original | link para o arquivo zip (contendo o código TS do Indicador do Canal Donchian, o Código TS do Relatório de comércio personalizado, o código do TS do sistema de compra, o código TS do TS, o macro do e-ratio do Excel (arquivo de texto), o exemplo da pasta de trabalho do Excel)
Atualizações gratuitas.
Posts Populares.
Procure o blog Au. Tra. Sy.
Global Futures Broker.
Au. Tra. Sy blog, Systematic Trading, pesquisa e desenvolvimento, com um sabor de Trend Following.
Descargo de responsabilidade: o desempenho passado não é necessariamente indicativo de resultados futuros. O comércio de futuros é complexo e apresenta o risco de perdas substanciais; Como tal, pode não ser adequado para todos os investidores. O conteúdo deste site é fornecido apenas como informação geral e não deve ser tomado como conselho de investimento. Todo o conteúdo do site, não deve ser interpretado como uma recomendação para comprar ou vender qualquer instrumento financeiro ou de segurança, ou para participar de qualquer estratégia de negociação ou de investimento específica. As idéias expressas neste site são apenas as opiniões do autor. O autor pode ou não ter uma posição em qualquer instrumento financeiro ou estratégia acima referida. Qualquer ação que você toma como resultado de informações ou análises neste site é, em última análise, sua exclusiva responsabilidade.
RESULTADOS DE DESEMPENHO HIPOTÉTICOS TEM MUITAS LIMITAÇÕES INERENTES, ALGUNS DESCRITOS ABAIXO. NENHUMA REPRESENTAÇÃO ESTÁ FAZENDO QUE QUALQUER CONTA VOCE OU POSSIBILIDADE DE ALCANÇAR LUCROS OU PERDAS SIMILARES ÀOS MOSTRADOS; POR FAVOR, HÁ DIFERENÇAS FREQUENTEMENTE SHARP ENTRE RESULTADOS DE DESEMPENHO HIPOTÉTICOS E OS RESULTADOS REAIS REALIZADOS POR TODOS OS PROGRAMAS DE NEGOCIAÇÕES PARTICULARES. UMA DAS LIMITAÇÕES DOS RESULTADOS DE DESEMPENHO HIPOTÉTICOS É QUE ESTÃO GERALMENTE PREPARADAS COM O BENEFÍCIO DE HINDSIGHT. ADICIONALMENTE, A NEGOCIAÇÃO HIPOTÉTICA NÃO IMPORTA RISCOS FINANCEIROS, E NENHUM GRUPO DE NEGOCIAÇÃO HIPOTÉTICA PODE COMPLETAMENTE CONTA PARA O IMPACTO DO RISCO FINANCEIRO DE NEGOCIAÇÃO REAL. POR EXEMPLO, A CAPACIDADE DE PERDER OU DE ADESIVAR A UM PROGRAMA DE NEGOCIAÇÃO ESPECÍFICO EM ESPIRRO DE PERDAS DE NEGOCIAÇÃO SÃO PONTOS MATERIAIS QUE PODEM IGUALMENTE AFETAR EFECTUAR RESULTADOS REAIS DE NEGOCIAÇÃO. HÁ NOMBROSOS OUTROS FATORES RELACIONADOS COM OS MERCADOS EM GERAL OU NA EXECUÇÃO DE QUALQUER PROGRAMA ESPECÍFICO DE NEGOCIAÇÃO QUE NÃO PODE SER TOTALMENTE COMPTABILIZADO NA PREPARAÇÃO DE RESULTADOS DE DESEMPENHO HIPOTÉTICOS E TODOS OS QUE PODEMOS ADVERSAMENTE EFECTUAR OS RESULTADOS DE NEGOCIAÇÃO.
ESTAS TABELAS DE DESEMPENHO E RESULTADOS SÃO HIPOTÉTICOS DE NATUREZA E NÃO REPRESENTA NEGOCIAÇÕES EM CONTAS REAIS.

Fundamentos do comércio algorítmico: conceitos e exemplos.
Um algoritmo é um conjunto específico de instruções claramente definidas destinadas a realizar uma tarefa ou processo.
O comércio algorítmico (negociação automatizada, negociação em caixa preta ou simplesmente algo-trading) é o processo de uso de computadores programados para seguir um conjunto definido de instruções para colocar um comércio para gerar lucros a uma velocidade e freqüência impossíveis para um comerciante humano. Os conjuntos definidos de regras são baseados em tempo, preço, quantidade ou qualquer modelo matemático. Além das oportunidades de lucro para o comerciante, o algo-trading torna os mercados mais líquidos e torna a negociação mais sistemática descartando impactos emocionais humanos nas atividades comerciais. (Para mais, consulte Picking the Right Algorithmic Trading Software.)
Suponha que um comerciante siga esses critérios de comércio simples:
Compre 50 ações de uma ação quando sua média móvel de 50 dias excede a média móvel de 200 dias. Vende ações da ação quando sua média móvel de 50 dias está abaixo da média móvel de 200 dias.
Usando este conjunto de duas instruções simples, é fácil escrever um programa de computador que monitorará automaticamente o preço das ações (e os indicadores de média móvel) e colocará as ordens de compra e venda quando as condições definidas forem atendidas. O comerciante não precisa mais manter um relógio para preços e gráficos ao vivo, ou colocar as ordens manualmente. O sistema de negociação algorítmica automaticamente faz isso para ele, identificando corretamente a oportunidade comercial. (Para mais informações sobre as médias móveis, consulte Médias móveis simples, faça as tendências se destacarem.)
[Se você quiser saber mais sobre as estratégias comprovadas e pontuais que podem eventualmente ser trabalhadas em um sistema de comércio alorítico, confira o Curso de Torneio de Dia de Torneio da Invastopedia Academy. ]
Benefícios da negociação algorítmica.
A Algo-trading oferece os seguintes benefícios:
Negociações executadas com os melhores preços Posicionamento instantâneo e preciso da ordem comercial (com altas chances de execução nos níveis desejados) Negociações cronometradas corretamente e instantaneamente, para evitar mudanças de preços significativas Custos de transação reduzidos (veja o exemplo de falta de implementação abaixo) Verificações automatizadas simultâneas em múltiplos condições de mercado Reduziu o risco de erros manuais na colocação dos negócios Backtest o algoritmo, com base nos dados históricos e em tempo real disponíveis Reduzida a possibilidade de erros por comerciantes humanos com base em fatores emocionais e psicológicos.
A maior parte do dia-a-dia é a negociação de alta freqüência (HFT), que tenta capitalizar a colocação de um grande número de pedidos em velocidades muito rápidas em múltiplos mercados e múltiplos parâmetros de decisão, com base em instruções pré-programadas. (Para obter mais informações sobre o comércio de alta freqüência, consulte Estratégias e Segredos de Empresas de Negociação de Alta Freqüência (HFT).)
O Algo-trading é usado em muitas formas de atividades de comércio e investimento, incluindo:
Investidores de médio a longo prazo ou empresas de compra (fundos de pensão, fundos de investimento, companhias de seguros) que adquirem ações em grandes quantidades, mas não querem influenciar os preços das ações com investimentos discretos e de grande porte. Os comerciantes de curto prazo e os participantes do lado da venda (fabricantes de mercado, especuladores e arbitragentes) se beneficiam da execução comercial automatizada; Além disso, ajudas de algo-trading na criação de liquidez suficiente para os vendedores no mercado. Os comerciantes sistemáticos (seguidores de tendências, comerciantes de pares, hedge funds, etc.) acham muito mais eficiente programar suas regras comerciais e permitir que o programa seja comercializado automaticamente.
O comércio algorítmico proporciona uma abordagem mais sistemática ao comércio ativo do que os métodos baseados na intuição ou instinto do comerciante humano.
Estratégias de negociação algorítmica.
Qualquer estratégia de negociação algorítmica exige uma oportunidade identificada que seja rentável em termos de melhoria de ganhos ou redução de custos. As seguintes são estratégias de negociação comuns usadas em algo-trading:
As estratégias de negociação algorítmicas mais comuns seguem as tendências em médias móveis, fuga de canais, movimentos no nível de preços e indicadores técnicos relacionados. Estas são as estratégias mais fáceis e simples de implementar através de negociação algorítmica porque essas estratégias não envolvem fazer previsões ou previsões de preços. Os negócios são iniciados com base na ocorrência de tendências desejáveis, que são fáceis e direitas de implementar através de algoritmos sem entrar na complexidade da análise preditiva. O exemplo acima mencionado de média móvel de 50 e 200 dias é uma tendência popular seguindo a estratégia. (Para mais informações sobre as estratégias de negociação de tendências, consulte: Estratégias simples para capitalizar as tendências.)
Comprar um estoque cotado duplo a um preço mais baixo em um mercado e simultaneamente vendê-lo a um preço mais alto em outro mercado oferece o diferencial de preço como lucro ou arbitragem sem risco. A mesma operação pode ser replicada para ações versus instrumentos de futuros, pois os diferenciais de preços existem de tempos em tempos. Implementar um algoritmo para identificar esses diferenciais de preços e colocar as ordens permite oportunidades lucrativas de forma eficiente.
Os fundos do índice definiram períodos de reequilíbrio para que suas participações fossem compatíveis com seus respectivos índices de referência. Isso cria oportunidades rentáveis ​​para comerciantes algorítmicos, que capitalizam os negócios esperados que oferecem lucros de 20 a 80 pontos base, dependendo do número de ações no fundo do índice, apenas antes do reequilíbrio do fundo do índice. Essas negociações são iniciadas através de sistemas de negociação algorítmica para execução atempada e melhores preços.
Muitos modelos matemáticos comprovados, como a estratégia de negociação neutra do delta, que permitem a negociação de combinações de opções e sua segurança subjacente, onde os negócios são colocados para compensar deltas positivos e negativos, de modo que o portfólio delta seja mantido em zero.
A estratégia de reversão média baseia-se na ideia de que os preços altos e baixos de um bem são um fenômeno temporário que retorna periodicamente ao seu valor médio. Identificar e definir uma faixa de preço e implementar algoritmos com base em isso permite que os negócios sejam colocados automaticamente quando o preço do recurso entra e sai do seu alcance definido.
A estratégia de preços médios ponderados por volume quebra uma grande ordem e libera pedaços menores determinados dinamicamente da ordem para o mercado usando perfis de volume histórico específicos de estoque. O objetivo é executar a ordem perto do preço médio ponderado do volume (VWAP), beneficiando assim o preço médio.
A estratégia de preço médio ponderado no tempo quebra uma grande ordem e libera dinamicamente determinados pedaços menores da ordem para o mercado usando intervalos de tempo uniformemente divididos entre o início e o fim do tempo. O objetivo é executar a ordem perto do preço médio entre os horários de início e término, minimizando assim o impacto no mercado.
Até que a ordem comercial seja totalmente preenchida, este algoritmo continua enviando ordens parciais, de acordo com o índice de participação definido e de acordo com o volume negociado nos mercados. A "estratégia de etapas" relacionada envia ordens a uma porcentagem definida pelo usuário de volumes de mercado e aumenta ou diminui essa taxa de participação quando o preço da ação atinge os níveis definidos pelo usuário.
A estratégia de falta de implementação visa minimizar o custo de execução de uma ordem através da negociação do mercado em tempo real, economizando assim o custo da ordem e beneficiando do custo de oportunidade da execução atrasada. A estratégia aumentará a taxa de participação direcionada quando o preço das ações se mover de forma favorável e diminuí-lo quando o preço das ações se mover de forma adversa.
Existem algumas classes especiais de algoritmos que tentam identificar "acontecimentos" do outro lado. Esses "algoritmos de sniffing", usados, por exemplo, por um market maker market market têm a inteligência interna para identificar a existência de qualquer algoritmo no lado da compra de uma grande ordem. Essa detecção através de algoritmos ajudará o fabricante de mercado a identificar grandes oportunidades de ordem e permitir que ele se beneficie ao preencher os pedidos a um preço mais alto. Isso às vezes é identificado como front-running de alta tecnologia. (Para obter mais informações sobre negociação de alta freqüência e práticas fraudulentas, consulte: Se você comprar ações on-line, você está envolvido em HFTs.)
Requisitos técnicos para negociação algorítmica.
Implementar o algoritmo usando um programa de computador é a última parte, batida com backtesting. O desafio é transformar a estratégia identificada em um processo informatizado integrado que tenha acesso a uma conta de negociação para fazer pedidos. São necessários os seguintes:
Conhecimento de programação de computador para programar a estratégia de negociação necessária, programadores contratados ou software de negociação pré-fabricado Conectividade de rede e acesso a plataformas de negociação para colocar os pedidos Acesso a feeds de dados de mercado que serão monitorados pelo algoritmo para oportunidades de colocar pedidos A capacidade e infra-estrutura para voltar a testar o sistema uma vez construído, antes de entrar em operação em mercados reais Dados históricos disponíveis para backtesting, dependendo da complexidade das regras implementadas no algoritmo.
Aqui está um exemplo abrangente: o Royal Dutch Shell (RDS) está listado na Amsterdam Stock Exchange (AEX) e London Stock Exchange (LSE). Vamos construir um algoritmo para identificar oportunidades de arbitragem. Aqui estão algumas observações interessantes:
AEX negocia em Euros, enquanto a LSE negocia em libras esterlinas. Devido à diferença horária de uma hora, a AEX abre uma hora antes da LSE, seguido de ambas as trocas comerciais simultaneamente durante as próximas horas e depois de negociar apenas na LSE durante a última hora à medida que o AEX fecha .
Podemos explorar a possibilidade de negociação de arbitragem nas ações da Royal Dutch Shell listadas nesses dois mercados em duas moedas diferentes?
Um programa de computador que pode ler os preços atuais do mercado Os feeds de preços de LSE e AEX A taxa de câmbio para a taxa de câmbio GBP-EUR Capacidade de colocação de pedidos que podem rotear a ordem para a troca correta do recurso Back-testing em feeds históricos de preços.
O programa de computador deve executar o seguinte:
Leia o preço de entrada do estoque RDS de ambas as bolsas Usando as taxas de câmbio disponíveis, converta o preço de uma moeda para outra. Se houver uma discrepância de preço suficientemente grande (descontando os custos de corretagem) levando a uma oportunidade rentável, então coloque a compra ordem em troca de preços mais baixos e ordem de venda em troca de preços mais elevados Se as ordens forem executadas conforme desejado, o lucro de arbitragem seguirá.
Simples e fácil! No entanto, a prática de negociação algorítmica não é simples de manter e executar. Lembre-se, se você pode colocar um comércio gerado por algo, os outros participantes do mercado podem também. Conseqüentemente, os preços flutuam em milissegundos e até mesmo em microssegundos. No exemplo acima, o que acontece se o seu comércio de compras for executado, mas o comércio de vendas não acontece à medida que os preços de venda mudam quando o seu pedido atinge o mercado? Você vai acabar sentado com uma posição aberta, tornando sua estratégia de arbitragem inútil.
Existem riscos e desafios adicionais: por exemplo, riscos de falha do sistema, erros de conectividade de rede, atrasos de tempo entre ordens comerciais e execução e, o mais importante de tudo, algoritmos imperfeitos. O algoritmo mais complexo é o backtesting mais rigoroso antes de ser posto em ação.
The Bottom Line.
A análise quantitativa do desempenho de um algoritmo desempenha um papel importante e deve ser examinada criticamente. É excitante ir pela automação auxiliada por computadores com a noção de ganhar dinheiro sem esforço. Mas é preciso certificar-se de que o sistema está completamente testado e os limites exigidos são definidos. Os comerciantes analíticos devem considerar a aprendizagem de sistemas de programação e construção por conta própria, ter confiança em implementar as estratégias certas de forma infalível. O uso cauteloso eo teste completo de algo-trading podem criar oportunidades rentáveis. (Para mais informações, consulte Como codificar seu próprio robô Algo Trading.)

Como os Algoritmos de Negociação foram Criados.
A negociação quantitativa não é acessível apenas aos comerciantes institucionais; Os comerciantes de varejo estão se envolvendo também. Embora as habilidades de programação sejam recomendadas se você quiser produzir algoritmos, mesmo que nem sempre sejam necessários. São disponíveis programas e serviços que escrevem o código de programação para uma estratégia com base nas entradas que você fornece. O código produzido pelo programa / serviço é então conectado à plataforma de negociação e as negociações começam. Mas antes que tudo isso possa ocorrer, os comerciantes algorítmicos desejosos progridem através de várias etapas, decidindo exatamente o que eles querem realizar com o algoritmo e como.
Time Frame e Restrições.
Embora um algoritmo bem programado possa funcionar por conta própria, recomenda-se algum descuido humano. Portanto, escolha um cronograma e uma freqüência comercial que você possa monitorar. Se você tem um emprego a tempo inteiro e seu algoritmo está programado para fazer centenas de negócios por dia em um gráfico de um minuto enquanto você está no trabalho, talvez não seja o ideal. Você pode desejar escolher um quadro um pouco mais longo para suas negociações, e menos freqüência comercial para que você possa acompanhar isso.
A rentabilidade na fase de teste do algoritmo não significa que continuará a produzir esses retornos para sempre. Ocasionalmente, você precisará intervir e alterar o algoritmo de negociação se os resultados revelarem que já não está funcionando bem. Este também é um compromisso de tempo que qualquer pessoa que se compromete a negociação algorítmica deve aceitar.
As restrições financeiras também são um problema. As comissões se acumulam muito rapidamente com uma estratégia de negociação de alta freqüência, portanto, certifique-se de que você está com o corretor de menor custo disponível e que o potencial de lucro de cada negociação garante o pagamento dessas comissões, potencialmente muitas vezes por dia. O capital inicial também é uma consideração. Diferentes mercados e produtos financeiros exigem valores diferentes de capital. Se o dia comercializar ações, você precisará de pelo menos US $ 25.000 (mais é recomendado), mas negociação forex ou futuros você pode potencialmente começar com menos.
As restrições de mercado são outra questão. Nem todos os mercados são adequados ao comércio algorítmico. Escolha ações, ETFs, pares de divisas ou futuros com ampla liquidez para lidar com as ordens que o algoritmo estará produzindo.
Desenvolva ou ajuste uma estratégia.
Uma vez que as restrições financeiras e de tempo são compreendidas, desenvolva ou ajuste uma estratégia que pode ser programada. Você pode ter uma estratégia que você troca manualmente, mas é facilmente codificado? Se sua estratégia é altamente subjetiva e não baseada em regras, a programação da estratégia pode ser impossível. As estratégias baseadas em regras são as mais fáceis de codificar; estratégias com entradas, paradas de perdas e metas de preços com base em dados quantificáveis ​​ou movimentos de preços.
Uma vez que as estratégias baseadas em regras são facilmente copiadas e testadas, existem abundantes disponíveis gratuitamente se você não tiver idéias próprias. A Quantpedia é um desses recursos, fornecendo documentos acadêmicos e resultados comerciais para vários métodos de negociação quantitativos. As regras descritas podem ser codificadas e, em seguida, testadas quanto à rentabilidade nos dados passados ​​e atuais. Codificar um algoritmo requer habilidade de programação ou acesso a software ou alguém que possa codificar para você.
Testando um Algoritmo de Negociação.
O passo mais importante é o teste. Uma vez que uma estratégia de negociação foi codificada, não troque capital real com ela até que ela tenha sido testada. O teste inclui permitir que o algoritmo funcione em dados históricos de preços, mostrando como o algoritmo foi realizado em milhares de negócios. Se a fase de teste histórico for rentável, e as estatísticas produzidas são aceitáveis ​​para sua tolerância ao risco - como, por exemplo, redução máxima, relação de ganhos, risco de arruamento, e, em seguida, proceder ao teste do algoritmo em condições de vida em uma conta demo. Mais uma vez, esta fase deve produzir centenas de negócios para que você possa acessar o desempenho.
Se o algoritmo é rentável em dados de preços históricos e negociando uma conta de demonstração ao vivo, use-o comercialmente de capital real, mas com um olhar atento. As condições ao vivo são diferentes dos testes históricos ou de demonstração, porque as ordens do algoritmo realmente afetam o mercado e podem causar derrapagens. Até que seja verificado, o algoritmo funciona no mercado real, como fez nos testes, mantenha um olhar atento.
Enquanto o algoritmo estiver operando dentro dos parâmetros estatísticos estabelecidos durante o teste, deixe o algoritmo sozinho. Algoritmos têm o benefício de negociar sem emoção, mas um comerciante que constantemente brincadeira com o algoritmo está anulando esse benefício. O algoritmo exige atenção. Monitorize o desempenho, e se as condições do mercado mudam tanto que o algoritmo já não está funcionando como deveria, então os ajustes podem ser necessários.
O comércio algorítmico não é um esforço definido e esquecido que o torna rico durante a noite. De fato, a negociação quantitativa pode ser tanto trabalho quanto a negociação manual. Se você optar por criar um algoritmo, esteja ciente de como o tempo, as restrições financeiras e de mercado podem afetar sua estratégia e planejar de acordo. Transforme uma estratégia atual em uma regra baseada em uma que possa ser mais facilmente programada ou selecione um método quantitativo que já foi testado e pesquisado. Em seguida, execute sua própria fase de teste usando dados históricos e atuais. Se isso for verificado, então execute o algoritmo com dinheiro real sob um olhar atento. Ajuste, se necessário, mas, de outra forma, deixe seu trabalho funcionar.

QuantStart.
Junte-se ao portal de membros privados da Quantcademy que atende à comunidade de comerciantes de varejo de varejo em rápido crescimento. Você encontrará um grupo bem informado de mentalistas quant pronto para responder suas perguntas comerciais mais importantes.
Confira meu ebook sobre o comércio de quant, onde eu ensino você como criar estratégias de negociação sistemáticas lucrativas com ferramentas Python, desde o início.
Dê uma olhada no meu novo ebook sobre estratégias de negociação avançadas usando análise de séries temporais, aprendizado de máquina e estatísticas bayesianas, com Python e R.
Por Michael Halls-Moore em 26 de julho de 2018.
Uma das perguntas mais freqüentes que recebo no QS mailbag é "Qual é a melhor linguagem de programação para negociação algorítmica?". A resposta curta é que não existe um "melhor" idioma. Parâmetros de estratégia, desempenho, modularidade, desenvolvimento, resiliência e custo devem ser considerados. Este artigo descreve os componentes necessários de uma arquitetura de sistema de negociação algorítmica e como as decisões relativas à implementação afetam a escolha do idioma.
Em primeiro lugar, serão considerados os principais componentes de um sistema de negociação algorítmico, como ferramentas de pesquisa, otimizador de portfólio, gerenciador de riscos e motor de execução. Posteriormente, serão examinadas diferentes estratégias de negociação e como elas afetam o design do sistema. Em particular, a freqüência de negociação e o provável volume de negociação serão discutidos.
Uma vez que a estratégia de negociação foi selecionada, é necessário arquitetar todo o sistema. Isso inclui a escolha de hardware, o (s) sistema (s) operacional (is) e a resiliência do sistema contra eventos raros e potencialmente catastróficos. Enquanto a arquitetura está sendo considerada, deve-se ter em conta o desempenho, tanto para as ferramentas de pesquisa quanto para o ambiente de execução ao vivo.
Qual é o sistema de comércio tentando fazer?
Antes de decidir sobre o "melhor" idioma com o qual escrever um sistema de negociação automatizado, é necessário definir os requisitos. O sistema será puramente baseado em execução? O sistema exigirá um módulo de gerenciamento de risco ou construção de portfólio? O sistema exigirá um backtester de alto desempenho? Para a maioria das estratégias, o sistema comercial pode ser dividido em duas categorias: Pesquisa e geração de sinal.
A pesquisa está preocupada com a avaliação de um desempenho de estratégia em relação aos dados históricos. O processo de avaliação de uma estratégia de negociação em relação aos dados anteriores do mercado é conhecido como backtesting. O tamanho dos dados e a complexidade algorítmica terão um grande impacto na intensidade computacional do backtester. A velocidade da CPU e a concorrência são muitas vezes os fatores limitantes na otimização da velocidade de execução da pesquisa.
A geração de sinal está preocupada com a geração de um conjunto de sinais de negociação a partir de um algoritmo e envio de ordens para o mercado, geralmente através de uma corretora. Para determinadas estratégias, é necessário um alto nível de desempenho. As questões de E / S, como a largura de banda da rede e a latência, muitas vezes são fatores limitantes na otimização de sistemas de execução. Assim, a escolha de idiomas para cada componente de todo o seu sistema pode ser bastante diferente.
Tipo, Frequência e Volume de Estratégia.
O tipo de estratégia algorítmica empregada terá um impacto substancial no design do sistema. Será necessário considerar os mercados comercializados, a conectividade com os fornecedores de dados externos, a freqüência e o volume da estratégia, o trade-off entre facilidade de desenvolvimento e otimização de desempenho, bem como qualquer hardware personalizado, incluindo customizado servidores, GPUs ou FPGAs que possam ser necessários.
As opções de tecnologia para uma estratégia de ações de baixa freqüência dos EUA serão muito diferentes das de uma negociação de estratégias de arbitragem estatística de alta freqüência no mercado de futuros. Antes da escolha do idioma, muitos fornecedores de dados devem ser avaliados que pertencem à estratégia em questão.
Será necessário considerar a conectividade com o fornecedor, a estrutura de todas as APIs, a pontualidade dos dados, os requisitos de armazenamento e a resiliência em face de um fornecedor que está offline. Também é aconselhável possuir acesso rápido a vários fornecedores! Vários instrumentos têm todos os seus peculiaridades de armazenamento, exemplos dos quais incluem símbolos de ticker múltiplos para ações e datas de vencimento para futuros (sem mencionar nenhum dado OTC específico). Isso precisa ser incorporado ao design da plataforma.
A frequência da estratégia provavelmente será um dos maiores drivers de como a pilha de tecnologia será definida. Estratégias que empregam dados com mais freqüência do que minuciosamente ou em segundo lugar, exigem uma consideração significativa em relação ao desempenho.
Uma estratégia que excede as barras segundo (isto é, dados de marca) leva a um design orientado a desempenho como o principal requisito. Para estratégias de alta freqüência, uma quantidade substancial de dados do mercado precisará ser armazenada e avaliada. Software como HDF5 ou kdb + é comumente usado para essas funções.
Para processar os extensos volumes de dados necessários para aplicações HFT, um sistema de backtester e execução extensivamente otimizado deve ser usado. C / C ++ (possivelmente com algum montador) é provável para o candidato a linguagem mais forte. As estratégias de ultra-alta freqüência certamente exigirão hardware personalizado, como FPGAs, co-localização de troca e ajuste de interface de rede / kernal.
Sistemas de pesquisa.
Os sistemas de pesquisa geralmente envolvem uma mistura de desenvolvimento interativo e script automatizado. O primeiro geralmente ocorre dentro de um IDE, como Visual Studio, MatLab ou R Studio. O último envolve cálculos numéricos extensos em vários parâmetros e pontos de dados. Isso leva a uma escolha de idioma que fornece um ambiente direto para testar código, mas também fornece desempenho suficiente para avaliar estratégias em várias dimensões de parâmetros.
Os IDE típicos neste espaço incluem Microsoft Visual C ++ / C #, que contém extensos utilitários de depuração, recursos de conclusão de código (via "Intellisense") e visões gerais diretas de toda a pilha do projeto (via o banco de dados ORM, LINQ); MatLab, que é projetado para uma grande variedade de álgebras lineares numéricas e operações vetoriais, mas de uma forma de console interativo; R Studio, que envolve o console de linguagem estatística R em um IDE de pleno direito; Eclipse IDE para Linux Java e C ++; e IDE semi-proprietários, como Enthought Canopy para Python, que incluem bibliotecas de análise de dados, como NumPy, SciPy, scikit-learn e pandas em um único ambiente interativo (console).
Para backtesting numérico, todos os idiomas acima são adequados, embora não seja necessário utilizar uma GUI / IDE, pois o código será executado "em segundo plano". A principal consideração nesta fase é a velocidade de execução. Um idioma compilado (como C ++) geralmente é útil se as dimensões do parâmetro backtest forem grandes. Lembre-se de que é necessário desconfiar de tais sistemas se for esse o caso!
Idiomas interpretados, como Python, muitas vezes fazem uso de bibliotecas de alto desempenho, como NumPy / pandas para a etapa de teste, para manter um grau razoável de competitividade com equivalentes compilados. Em última análise, o idioma escolhido para o backtesting será determinado por necessidades algorítmicas específicas, bem como o intervalo de bibliotecas disponíveis no idioma (mais sobre isso abaixo). No entanto, o idioma utilizado para o backtester e os ambientes de pesquisa podem ser completamente independentes dos usados ​​na construção de portfólio, gerenciamento de riscos e componentes de execução, como será visto.
Construção de carteiras e gerenciamento de riscos.
A construção do portfólio e os componentes de gerenciamento de riscos são muitas vezes ignorados pelos comerciantes algorítmicos de varejo. Isso é quase sempre um erro. Essas ferramentas fornecem o mecanismo pelo qual o capital será preservado. Eles não só tentam aliviar o número de apostas "arriscadas", mas também minimizam o churn dos próprios negócios, reduzindo os custos de transação.
Versões sofisticadas desses componentes podem ter um efeito significativo na qualidade e consistência da lucratividade. É direto criar um estável de estratégias, pois o mecanismo de construção do portfólio e o gerenciador de riscos podem ser facilmente modificados para lidar com múltiplos sistemas. Assim, eles devem ser considerados componentes essenciais no início do projeto de um sistema de comércio algorítmico.
O trabalho do sistema de construção de carteiras é levar um conjunto de trades desejados e produzir o conjunto de negócios reais que minimizam o churn, manter exposições a vários fatores (como setores, classes de ativos, volatilidade, etc.) e otimizar a alocação de capital para vários estratégias em um portfólio.
A construção do portfólio geralmente se reduz a um problema de álgebra linear (como uma fatoração da matriz) e, portanto, o desempenho é altamente dependente da eficácia da implementação de álgebra linear numérica disponível. As bibliotecas comuns incluem uBLAS, LAPACK e NAG para C ++. O MatLab também possui operações de matriz amplamente otimizadas. Python utiliza NumPy / SciPy para tais cálculos. Um portfólio freqüentemente reequilibrado exigirá uma biblioteca de matriz compilada (e bem otimizada!) Para levar a cabo esta etapa, de modo a não engarrafar o sistema de negociação.
O gerenciamento de riscos é outra parte extremamente importante de um sistema de comércio algorítmico. O risco pode vir de várias formas: aumento da volatilidade (embora isso possa ser visto como desejável para certas estratégias!), Aumento de correlações entre classes de ativos, contraparte padrão, interrupções do servidor, eventos de "cisnes negros" e erros não detectados no código comercial, para nomear alguns.
Os componentes de gerenciamento de risco tentam antecipar os efeitos da volatilidade excessiva e a correlação entre as classes de ativos e seus efeitos (s) subsequentes sobre o capital de negociação. Muitas vezes isso se reduz a um conjunto de cálculos estatísticos, como Monte Carlo "testes de estresse". Isso é muito semelhante às necessidades computacionais de um mecanismo de preços de derivativos e, como tal, será vinculado à CPU. Essas simulações são altamente paralelizáveis ​​(veja abaixo) e, até certo ponto, é possível "lançar hardware no problema".
Sistemas de Execução.
O trabalho do sistema de execução é receber sinais de negociação filtrados dos componentes de construção de portfólio e gerenciamento de riscos e enviá-los para uma corretora ou outros meios de acesso ao mercado. Para a maioria das estratégias de negociação algorítmica de varejo, isso envolve uma conexão API ou FIX para uma corretora, como Interactive Brokers. As considerações primárias ao decidir sobre um idioma incluem a qualidade da API, a disponibilidade do idioma para uma API, a freqüência de execução e o deslizamento antecipado.
A "qualidade" da API refere-se ao quão bem documentado é, qual o tipo de desempenho que ele fornece, se ele precisa de um software autônomo para ser acessado ou se um gateway pode ser estabelecido de forma sem cabeça (ou seja, sem GUI). No caso dos Interactive Brokers, a ferramenta Trader WorkStation precisa ser executada em um ambiente GUI para acessar sua API. Uma vez, tive que instalar uma edição do Desktop Ubuntu em um servidor de nuvem da Amazon para acessar os corretores interativos de forma remota, apenas por esse motivo!
A maioria das APIs fornecerá uma interface C ++ e / ou Java. Geralmente, é de responsabilidade da comunidade desenvolver wrappers específicos do idioma para C #, Python, R, Excel e MatLab. Note-se que, com cada plugin adicional utilizado (especialmente os wrappers da API), há possibilidades de insetos no sistema. Sempre testar plugins desse tipo e garantir que eles sejam ativamente mantidos. Um indicador valioso é ver quantas novas atualizações de uma base de código foram feitas nos últimos meses.
A frequência de execução é de extrema importância no algoritmo de execução. Note que centenas de pedidos podem ser enviados a cada minuto e, como tal, o desempenho é crítico. Slippage será incorrido através de um sistema de execução mal executado e isso terá um impacto dramático sobre a rentabilidade.
Os idiomas estaticamente digitados (veja abaixo), como C ++ / Java, geralmente são ótimos para execução, mas há um trade-off em tempo de desenvolvimento, testes e facilidade de manutenção. Idiomas dinamicamente digitados, como Python e Perl, geralmente são geralmente "rápidos o suficiente". Certifique-se sempre de que os componentes foram projetados de forma modular (veja abaixo) para que eles possam ser "trocados" à medida que o sistema se reduz.
Processo de Planejamento e Desenvolvimento Arquitetônico.
Os componentes de um sistema de comércio, seus requisitos de freqüência e volume foram discutidos acima, mas a infraestrutura do sistema ainda não foi coberta. Aqueles que atuam como comerciante de varejo ou que trabalham em um fundo pequeno provavelmente estarão "vestindo muitos chapéus". Será necessário cobrir o modelo alfa, o gerenciamento de riscos e os parâmetros de execução, bem como a implementação final do sistema. Antes de aprofundar linguagens específicas, o design de uma arquitetura de sistema ideal será discutido.
Separação de preocupações.
Uma das decisões mais importantes que devem ser tomadas no início é como "separar as preocupações" de um sistema comercial. No desenvolvimento de software, isso significa essencialmente como dividir os diferentes aspectos do sistema de negociação em componentes modulares separados.
Ao expor as interfaces em cada um dos componentes, é fácil trocar partes do sistema por outras versões que ajudem o desempenho, confiabilidade ou manutenção, sem modificar nenhum código de dependência externo. Esta é a "melhor prática" para esses sistemas. Para estratégias em frequências mais baixas, tais práticas são aconselhadas. Para a negociação de alta freqüência, o livro de regras pode ser ignorado à custa de ajustar o sistema para ainda mais desempenho. Um sistema mais acoplado pode ser desejável.
Criar um mapa de componentes de um sistema de negociação algorítmico vale um artigo em si. No entanto, uma abordagem ótima é garantir que haja componentes separados para as entradas de dados de mercado históricos e em tempo real, armazenamento de dados, API de acesso a dados, backtester, parâmetros de estratégia, construção de portfólio, gerenciamento de riscos e sistemas de execução automatizada.
Por exemplo, se o armazenamento de dados em uso estiver atualmente com desempenho inferior, mesmo em níveis significativos de otimização, ele pode ser trocado com reescrituras mínimas para a ingesta de dados ou API de acesso a dados. Até o ponto em que o backtester e os componentes subsequentes estão em causa, não há diferença.
Outro benefício de componentes separados é que permite que uma variedade de linguagens de programação sejam usadas no sistema geral. Não é necessário restringir a um único idioma se o método de comunicação dos componentes for independente de linguagem. Este será o caso se estiverem se comunicando via TCP / IP, ZeroMQ ou algum outro protocolo independente de linguagem.
Como um exemplo concreto, considere o caso de um sistema de backtesting que está sendo escrito em C ++ para o desempenho do "crunching", enquanto o gerenciador de portfólio e os sistemas de execução são escritos em Python usando SciPy e IBPy.
Considerações sobre o desempenho.
O desempenho é uma consideração significativa para a maioria das estratégias comerciais. Para estratégias de maior freqüência, é o fator mais importante. O "Desempenho" cobre uma ampla gama de problemas, como velocidade de execução algorítmica, latência de rede, largura de banda, E / S de dados, simultaneidade / paralelismo e dimensionamento. Cada uma dessas áreas é coberta individualmente por grandes livros didáticos, portanto este artigo apenas arranhará a superfície de cada tópico. A escolha da arquitetura e da linguagem agora será discutida em termos de seus efeitos sobre o desempenho.
A sabedoria prevalecente, como afirmou Donald Knuth, um dos pais da Ciência da Computação, é que "a otimização prematura é a raiz de todo o mal". Este é quase sempre o caso - exceto quando se forma um algoritmo de negociação de alta freqüência! Para aqueles que estão interessados ​​em estratégias de baixa freqüência, uma abordagem comum é construir um sistema da maneira mais simples possível e apenas otimizar à medida que os estrangulamentos começam a aparecer.
Ferramentas de perfil são usadas para determinar onde surgem os estrangulamentos. Perfis podem ser feitos para todos os fatores listados acima, em um ambiente MS Windows ou Linux. Existem muitas ferramentas de sistema operacional e de idioma disponíveis para isso, bem como utilitários de terceiros. A escolha da linguagem agora será discutida no contexto da performance.
C ++, Java, Python, R e MatLab contêm bibliotecas de alto desempenho (como parte do padrão ou externo) para estrutura básica de dados e trabalho algorítmico. C ++ é fornecido com a Biblioteca de modelos padrão, enquanto o Python contém NumPy / SciPy. Tarefas matemáticas comuns são encontradas nessas bibliotecas e raramente é benéfico escrever uma nova implementação.
Uma exceção é se uma arquitetura de hardware altamente personalizada é necessária e um algoritmo está fazendo uso extensivo de extensões proprietárias (como caches personalizados). No entanto, muitas vezes a "reinvenção da roda" desperdiça o tempo que pode ser melhor gasto no desenvolvimento e otimização de outras partes da infra-estrutura de negociação. O tempo de desenvolvimento é extremamente precioso especialmente no contexto dos únicos desenvolvedores.
A latência é muitas vezes uma questão do sistema de execução, pois as ferramentas de pesquisa geralmente estão localizadas na mesma máquina. Para o primeiro, a latência pode ocorrer em vários pontos ao longo do caminho de execução. Os bancos de dados devem ser consultados (latência de disco / rede), os sinais devem ser gerados (sistema operacional, latência de mensagens do kernal), sinais comerciais enviados (latência NIC) e pedidos processados ​​(latência interna dos sistemas de troca).
Para operações de maior freqüência, é necessário familiarizar-se intimamente com a otimização do kernal, além de otimizar a transmissão da rede. Esta é uma área profunda e está significativamente além do escopo do artigo, mas se um algoritmo UHFT é desejado então esteja ciente da profundidade do conhecimento necessário!
O cache é muito útil no conjunto de ferramentas de um desenvolvedor de negócios quantitativo. O armazenamento em cache refere-se ao conceito de armazenar dados freqüentemente acessados ​​de uma maneira que permita um acesso de alto desempenho, em detrimento do potencial estancamento dos dados. Um caso de uso comum ocorre no desenvolvimento da web ao tirar dados de um banco de dados relacional com respaldo de disco e colocá-lo na memória. Quaisquer pedidos subseqüentes para os dados não precisam "acessar o banco de dados" e, portanto, os ganhos de desempenho podem ser significativos.
Para situações de negociação, o cache pode ser extremamente benéfico. Por exemplo, o estado atual de um portfólio de estratégia pode ser armazenado em um cache até ser reequilibrado, de modo que a lista não precisa ser regenerada em cada ciclo do algoritmo de negociação. Essa regeneração provavelmente será uma alta CPU ou operação de E / S de disco.
No entanto, o armazenamento em cache não está sem os seus próprios problemas. A regeneração de dados de cache de uma só vez, devido à natureza volátil do armazenamento de cache, pode colocar uma demanda significativa na infraestrutura. Outra questão é o empilhamento de cães, onde múltiplas gerações de uma nova cópia de cache são realizadas sob uma carga extremamente alta, o que leva a uma falha em cascata.
A alocação de memória dinâmica é uma operação cara na execução de software. Assim, é imperativo que os aplicativos de maior desempenho comercial sejam conscientes de como a memória está sendo alocada e desalocada durante o fluxo do programa. Novos padrões de linguagem, como Java, C # e Python, todos executam a coleta automática de lixo, que se refere à desalocação da memória alocada dinamicamente quando os objetos ficam fora do escopo.
A coleta de lixo é extremamente útil durante o desenvolvimento, pois reduz erros e ajuda a legibilidade. No entanto, muitas vezes é sub óptimo para certas estratégias de negociação de alta freqüência. A coleta de lixo personalizada é muitas vezes desejada para esses casos. Em Java, por exemplo, ao ajustar a configuração do coletor de lixo e do heap, é possível obter alto desempenho para as estratégias de HFT.
C ++ não fornece um coletor de lixo nativo e, portanto, é necessário lidar com toda a alocação / desalocação de memória como parte da implementação de um objeto. Embora potencialmente propenso a erros (potencialmente levando a ponteiros pendurados), é extremamente útil ter um controle fino de como os objetos aparecem no heap para determinadas aplicações. Ao escolher um idioma, certifique-se de estudar como funciona o coletor de lixo e se ele pode ser modificado para otimizar um caso de uso específico.
Muitas operações em sistemas de negociação algorítmica são favoráveis ​​à paralelização. Isso se refere ao conceito de realização de múltiplas operações programáticas ao mesmo tempo, ou seja, em "paralelo". Os algoritmos denominados "embarassingly paralelos" incluem etapas que podem ser computadas totalmente independentemente de outras etapas. Certas operações estatísticas, como as simulações de Monte Carlo, são um bom exemplo de algoritmos embarazosa paralelos, pois cada sorteio aleatório e subsequente operação do caminho podem ser computados sem o conhecimento de outros caminhos.
Outros algoritmos são apenas parcialmente paralelizados. As simulações de dinâmica de fluidos são um exemplo, onde o domínio da computação pode ser subdividido, mas, em última instância, esses domínios devem se comunicar entre si e, portanto, as operações são parcialmente seqüenciais. Os algoritmos paralisáveis ​​estão sujeitos à Lei de Amdahl, que fornece um limite superior teórico para o aumento de desempenho de um algoritmo paralelizado quando sujeito a processos separados em $ N $ (por exemplo, em um núcleo ou fio de CPU).
A paralelização tornou-se cada vez mais importante como um meio de otimização, uma vez que as velocidades do clock do processador estagnaram, já que os processadores mais novos contêm muitos núcleos com os quais realizar cálculos paralelos. O aumento do hardware de gráficos de consumo (predominantemente para videogames) levou ao desenvolvimento de Unidades de processamento gráfico (GPUs), que contém centenas de "núcleos" para operações altamente concorrentes. Tais GPUs são agora muito acessíveis. Os quadros de alto nível, como o CUDA da Nvidia, levaram a uma adoção generalizada na academia e nas finanças.
Esse hardware de GPU geralmente é apenas adequado para o aspecto de pesquisa de financiamento quantitativo, enquanto que outros equipamentos mais especializados (incluindo matrizes de portas programáveis ​​em campo - FPGAs) são usados ​​para (U) HFT. Atualmente, a maioria dos langauges modernos suporta um grau de concorrência / multithreading. Assim, é direto otimizar um backtester, pois todos os cálculos são geralmente independentes dos outros.
O dimensionamento em engenharia e operações de software refere-se à capacidade do sistema de lidar consistentemente com o aumento de cargas sob a forma de solicitações maiores, maior uso do processador e maior alocação de memória. Na negociação algorítmica, uma estratégia pode escalar se pode aceitar quantidades maiores de capital e ainda produzir retornos consistentes. A pilha de tecnologia de negociação escala se pode suportar maiores volumes de comércio e latência aumentada, sem bloqueio de estrangulamento.
Enquanto os sistemas devem ser projetados para dimensionar, muitas vezes é difícil prever de antemão, onde um gargalo irá ocorrer. O registro, o teste, o perfil e o monitoramento rigorosos ajudarão grandemente em permitir que um sistema seja dimensionado. As próprias línguas são muitas vezes descritas como "inesquecíveis". Isso geralmente é o resultado de uma informação errônea, e não de um fato difícil. É a pilha de tecnologia total que deve ser verificada quanto à escalabilidade, e não ao idioma. Claramente, certas línguas têm maior desempenho do que outras em casos de uso específicos, mas um idioma nunca é "melhor" do que outro em todos os sentidos.
Um meio de gerenciar a escala é separar as preocupações, como afirmado acima. A fim de introduzir ainda a capacidade de lidar com "picos" no sistema (ou seja, uma volatilidade súbita que desencadeia uma série de trades), é útil criar uma "arquitetura de filas de mensagens". Isso simplesmente significa colocar um sistema de fila de mensagens entre os componentes para que as ordens sejam "empilhadas" se um determinado componente não conseguir processar muitos pedidos.
Em vez de pedidos de perda, eles simplesmente são mantidos em uma pilha até que a mensagem seja tratada. Isso é particularmente útil para enviar trocas para um mecanismo de execução. Se o motor está sofrendo em latência intensa, ele irá fazer backup de trades. Uma fila entre o gerador de sinal comercial e a API de execução aliviará essa questão à custa de uma possível destruição comercial. Um bem respeitado corretor de fila de mensagens de código aberto é RabbitMQ.
Hardware e sistemas operacionais.
O hardware que executa sua estratégia pode ter um impacto significativo na rentabilidade do seu algoritmo. Esta não é uma questão restrita aos comerciantes de alta freqüência. Uma má escolha em hardware e sistema operacional pode levar a uma falha na máquina ou reiniciar no momento mais inoportuno. Assim, é necessário considerar onde sua candidatura irá residir. A escolha é geralmente entre uma máquina de mesa pessoal, um servidor remoto, um provedor de "nuvem" ou um servidor co-localizado em troca.
As máquinas de mesa são simples de instalar e administrar, especialmente com sistemas operacionais mais novos e amigáveis, como o Windows 7/8, o Mac OSX eo Ubuntu. Os sistemas de desktop possuem algumas desvantagens significativas, no entanto. O principal é que as versões dos sistemas operacionais projetados para máquinas de mesa provavelmente irão requerer reinicialização / remendo (e muitas vezes no pior dos tempos!). Eles também usam mais recursos computacionais pela virtude de exigir uma interface gráfica do usuário (GUI).
Utilizar hardware em um ambiente doméstico (ou escritório local) pode levar à conectividade com a internet e aos problemas de tempo de atividade. O principal benefício de um sistema de desktop é que a potência computacional significativa pode ser comprada pela fração do custo de um servidor dedicado remoto (ou sistema baseado em nuvem) de velocidade comparável.
Um servidor dedicado ou uma máquina baseada em nuvem, muitas vezes mais caro do que uma opção de desktop, permite uma infra-estrutura de redundância mais significativa, como backups automatizados de dados, a capacidade de garantir de forma mais direta o tempo de atividade e monitoramento remoto. Eles são mais difíceis de administrar, pois exigem a capacidade de usar recursos de logon remoto do sistema operacional.
No Windows, isto é geralmente através do GUI Remote Desktop Protocol (RDP). Em sistemas baseados em Unix, a linha de comando Secure SHell (SSH) é usada. A infraestrutura de servidor baseada em Unix é quase sempre baseada em linha de comando, o que imediatamente faz com que as ferramentas de programação baseadas em GUI (como MatLab ou Excel) sejam inutilizáveis.
Um servidor co-localizado, como a frase é usada nos mercados de capitais, é simplesmente um servidor dedicado que se encontra dentro de uma troca para reduzir a latência do algoritmo de negociação. Isso é absolutamente necessário para certas estratégias de negociação de alta freqüência, que dependem de baixa latência para gerar alfa.
O aspecto final para a escolha do hardware e a escolha da linguagem de programação é a independência da plataforma. Existe a necessidade do código para executar vários sistemas operacionais diferentes? O código foi projetado para ser executado em um tipo específico de arquitetura de processador, como o Intel x86 / x64 ou será possível executar em processadores RISC, como os fabricados pela ARM? Essas questões serão altamente dependentes da frequência e do tipo de estratégia implementada.
Resilience and Testing.
One of the best ways to lose a lot of money on algorithmic trading is to create a system with no resiliency . This refers to the durability of the sytem when subject to rare events, such as brokerage bankruptcies, sudden excess volatility, region-wide downtime for a cloud server provider or the accidental deletion of an entire trading database. Years of profits can be eliminated within seconds with a poorly-designed architecture. It is absolutely essential to consider issues such as debuggng, testing, logging, backups, high-availability and monitoring as core components of your system.
It is likely that in any reasonably complicated custom quantitative trading application at least 50% of development time will be spent on debugging, testing and maintenance.
Nearly all programming languages either ship with an associated debugger or possess well-respected third-party alternatives. In essence, a debugger allows execution of a program with insertion of arbitrary break points in the code path, which temporarily halt execution in order to investigate the state of the system. The main benefit of debugging is that it is possible to investigate the behaviour of code prior to a known crash point .
Debugging is an essential component in the toolbox for analysing programming errors. However, they are more widely used in compiled languages such as C++ or Java, as interpreted languages such as Python are often easier to debug due to fewer LOC and less verbose statements. Despite this tendency Python does ship with the pdb, which is a sophisticated debugging tool. The Microsoft Visual C++ IDE possesses extensive GUI debugging utilities, while for the command line Linux C++ programmer, the gdb debugger exists.
Testing in software development refers to the process of applying known parameters and results to specific functions, methods and objects within a codebase, in order to simulate behaviour and evaluate multiple code-paths, helping to ensure that a system behaves as it should. A more recent paradigm is known as Test Driven Development (TDD), where test code is developed against a specified interface with no implementation. Prior to the completion of the actual codebase all tests will fail. As code is written to "fill in the blanks", the tests will eventually all pass, at which point development should cease.
TDD requires extensive upfront specification design as well as a healthy degree of discipline in order to carry out successfully. In C++, Boost provides a unit testing framework. In Java, the JUnit library exists to fulfill the same purpose. Python also has the unittest module as part of the standard library. Many other languages possess unit testing frameworks and often there are multiple options.
In a production environment, sophisticated logging is absolutely essential. Logging refers to the process of outputting messages, with various degrees of severity, regarding execution behaviour of a system to a flat file or database. Logs are a "first line of attack" when hunting for unexpected program runtime behaviour. Unfortunately the shortcomings of a logging system tend only to be discovered after the fact! As with backups discussed below, a logging system should be given due consideration BEFORE a system is designed.
Both Microsoft Windows and Linux come with extensive system logging capability and programming languages tend to ship with standard logging libraries that cover most use cases. It is often wise to centralise logging information in order to analyse it at a later date, since it can often lead to ideas about improving performance or error reduction, which will almost certainly have a positive impact on your trading returns.
While logging of a system will provide information about what has transpired in the past, monitoring of an application will provide insight into what is happening right now . All aspects of the system should be considered for monitoring. System level metrics such as disk usage, available memory, network bandwidth and CPU usage provide basic load information.
Trading metrics such as abnormal prices/volume, sudden rapid drawdowns and account exposure for different sectors/markets should also be continuously monitored. Further, a threshold system should be instigated that provides notification when certain metrics are breached, elevating the notification method (email, SMS, automated phone call) depending upon the severity of the metric.
System monitoring is often the domain of the system administrator or operations manager. However, as a sole trading developer, these metrics must be established as part of the larger design. Many solutions for monitoring exist: proprietary, hosted and open source, which allow extensive customisation of metrics for a particular use case.
Backups and high availability should be prime concerns of a trading system. Consider the following two questions: 1) If an entire production database of market data and trading history was deleted (without backups) how would the research and execution algorithm be affected? 2) If the trading system suffers an outage for an extended period (with open positions) how would account equity and ongoing profitability be affected? The answers to both of these questions are often sobering!
It is imperative to put in place a system for backing up data and also for testing the restoration of such data. Many individuals do not test a restore strategy. If recovery from a crash has not been tested in a safe environment, what guarantees exist that restoration will be available at the worst possible moment?
Similarly, high availability needs to be "baked in from the start". Redundant infrastructure (even at additional expense) must always be considered, as the cost of downtime is likely to far outweigh the ongoing maintenance cost of such systems. I won't delve too deeply into this topic as it is a large area, but make sure it is one of the first considerations given to your trading system.
Choosing a Language.
Considerable detail has now been provided on the various factors that arise when developing a custom high-performance algorithmic trading system. The next stage is to discuss how programming languages are generally categorised.
Type Systems.
When choosing a language for a trading stack it is necessary to consider the type system . The languages which are of interest for algorithmic trading are either statically - or dynamically-typed . A statically-typed language performs checks of the types (e. g. integers, floats, custom classes etc) during the compilation process. Such languages include C++ and Java. A dynamically-typed language performs the majority of its type-checking at runtime. Such languages include Python, Perl and JavaScript.
For a highly numerical system such as an algorithmic trading engine, type-checking at compile time can be extremely beneficial, as it can eliminate many bugs that would otherwise lead to numerical errors. However, type-checking doesn't catch everything, and this is where exception handling comes in due to the necessity of having to handle unexpected operations. 'Dynamic' languages (i. e. those that are dynamically-typed) can often lead to run-time errors that would otherwise be caught with a compilation-time type-check. For this reason, the concept of TDD (see above) and unit testing arose which, when carried out correctly, often provides more safety than compile-time checking alone.
Another benefit of statically-typed languages is that the compiler is able to make many optimisations that are otherwise unavailable to the dynamically - typed language, simply because the type (and thus memory requirements) are known at compile-time. In fact, part of the inefficiency of many dynamically-typed languages stems from the fact that certain objects must be type-inspected at run-time and this carries a performance hit. Libraries for dynamic languages, such as NumPy/SciPy alleviate this issue due to enforcing a type within arrays.
Open Source or Proprietary?
One of the biggest choices available to an algorithmic trading developer is whether to use proprietary (commercial) or open source technologies. Existem vantagens e desvantagens para ambas as abordagens. It is necessary to consider how well a language is supported, the activity of the community surrounding a language, ease of installation and maintenance, quality of the documentation and any licensing/maintenance costs.
The Microsoft stack (including Visual C++, Visual C#) and MathWorks' MatLab are two of the larger proprietary choices for developing custom algorithmic trading software. Both tools have had significant "battle testing" in the financial space, with the former making up the predominant software stack for investment banking trading infrastructure and the latter being heavily used for quantitative trading research within investment funds.
Microsoft and MathWorks both provide extensive high quality documentation for their products. Further, the communities surrounding each tool are very large with active web forums for both. The software allows cohesive integration with multiple languages such as C++, C# and VB, as well as easy linkage to other Microsoft products such as the SQL Server database via LINQ. MatLab also has many plugins/libraries (some free, some commercial) for nearly any quantitative research domain.
There are also drawbacks. With either piece of software the costs are not insignificant for a lone trader (although Microsoft does provide entry-level version of Visual Studio for free). Microsoft tools "play well" with each other, but integrate less well with external code. Visual Studio must also be executed on Microsoft Windows, which is arguably far less performant than an equivalent Linux server which is optimally tuned.
MatLab also lacks a few key plugins such as a good wrapper around the Interactive Brokers API, one of the few brokers amenable to high-performance algorithmic trading. The main issue with proprietary products is the lack of availability of the source code. This means that if ultra performance is truly required, both of these tools will be far less attractive.
Open source tools have been industry grade for sometime. Much of the alternative asset space makes extensive use of open-source Linux, MySQL/PostgreSQL, Python, R, C++ and Java in high-performance production roles. However, they are far from restricted to this domain. Python and R, in particular, contain a wealth of extensive numerical libraries for performing nearly any type of data analysis imaginable, often at execution speeds comparable to compiled languages, with certain caveats.
The main benefit of using interpreted languages is the speed of development time. Python and R require far fewer lines of code (LOC) to achieve similar functionality, principally due to the extensive libraries. Além disso, eles geralmente permitem um desenvolvimento baseado em console interativo, reduzindo rapidamente o processo de desenvolvimento iterativo.
Given that time as a developer is extremely valuable, and execution speed often less so (unless in the HFT space), it is worth giving extensive consideration to an open source technology stack. Python and R possess significant development communities and are extremely well supported, due to their popularity. Documentation is excellent and bugs (at least for core libraries) remain scarce.
Open source tools often suffer from a lack of a dedicated commercial support contract and run optimally on systems with less-forgiving user interfaces. A typical Linux server (such as Ubuntu) will often be fully command-line oriented. In addition, Python and R can be slow for certain execution tasks. There are mechanisms for integrating with C++ in order to improve execution speeds, but it requires some experience in multi-language programming.
While proprietary software is not immune from dependency/versioning issues it is far less common to have to deal with incorrect library versions in such environments. Os sistemas operacionais de código aberto, como o Linux, podem ser mais difíceis de administrar.
I will venture my personal opinion here and state that I build all of my trading tools with open source technologies. In particular I use: Ubuntu, MySQL, Python, C++ and R. The maturity, community size, ability to "dig deep" if problems occur and lower total cost ownership (TCO) far outweigh the simplicity of proprietary GUIs and easier installations. Having said that, Microsoft Visual Studio (especially for C++) is a fantastic Integrated Development Environment (IDE) which I would also highly recommend.
Batteries Included?
The header of this section refers to the "out of the box" capabilities of the language - what libraries does it contain and how good are they? This is where mature languages have an advantage over newer variants. C++, Java and Python all now possess extensive libraries for network programming, HTTP, operating system interaction, GUIs, regular expressions (regex), iteration and basic algorithms.
C++ is famed for its Standard Template Library (STL) which contains a wealth of high performance data structures and algorithms "for free". Python is known for being able to communicate with nearly any other type of system/protocol (especially the web), mostly through its own standard library. R has a wealth of statistical and econometric tools built in, while MatLab is extremely optimised for any numerical linear algebra code (which can be found in portfolio optimisation and derivatives pricing, for instance).
Outside of the standard libraries, C++ makes use of the Boost library, which fills in the "missing parts" of the standard library. In fact, many parts of Boost made it into the TR1 standard and subsequently are available in the C++11 spec, including native support for lambda expressions and concurrency.
Python has the high performance NumPy/SciPy/Pandas data analysis library combination, which has gained widespread acceptance for algorithmic trading research. Further, high-performance plugins exist for access to the main relational databases, such as MySQL++ (MySQL/C++), JDBC (Java/MatLab), MySQLdb (MySQL/Python) and psychopg2 (PostgreSQL/Python). Python can even communicate with R via the RPy plugin!
An often overlooked aspect of a trading system while in the initial research and design stage is the connectivity to a broker API. Most APIs natively support C++ and Java, but some also support C# and Python, either directly or with community-provided wrapper code to the C++ APIs. In particular, Interactive Brokers can be connected to via the IBPy plugin. If high-performance is required, brokerages will support the FIX protocol.
Conclusão.
As is now evident, the choice of programming language(s) for an algorithmic trading system is not straightforward and requires deep thought. The main considerations are performance, ease of development, resiliency and testing, separation of concerns, familiarity, maintenance, source code availability, licensing costs and maturity of libraries.
O benefício de uma arquitetura separada é que permite que os idiomas sejam "conectados" para diferentes aspectos de uma pilha de negociação, conforme e quando os requisitos mudarem. A trading system is an evolving tool and it is likely that any language choices will evolve along with it.
Apenas iniciando o comércio quantitativo?
3 razões para se inscrever para a lista de e-mails QuantStart:
1. Quant Trading Lessons.
Você terá acesso instantâneo a um curso de e-mail gratuito de 10 partes, repleto de sugestões e dicas para ajudá-lo a começar a negociação quantitativa!
2. Todo o conteúdo mais recente.
Todas as semanas, vou enviar-lhe um envoltório de todas as atividades no QuantStart para que você nunca mais perca uma postagem novamente.
Real, dicas de negociação viáveis, sem tonturas.

Codificação de sistemas de negociação.
Por Justin Kuepper.
Como são criados sistemas de negociação automatizados?
Este tutorial se concentrará nas segunda e terceira partes deste processo, onde suas regras são convertidas em um código que seu software comercial pode entender e usar.
Vantagens e desvantagens.
Um sistema automatizado leva a emoção e ocupado - trabalhe fora da negociação, o que permite que você se concentre em melhorar sua estratégia e regras de gerenciamento de dinheiro. Uma vez que um sistema lucrativo é desenvolvido, não requer nenhum trabalho de sua parte até que ele quebre, ou as condições do mercado exigem uma mudança. Desvantagens:
Se o sistema não estiver corretamente codificado e testado, grandes perdas podem ocorrer muito rapidamente. Às vezes, é impossível colocar certas regras em código, o que dificulta o desenvolvimento de um sistema de negociação automatizado. Neste tutorial, você aprenderá como planejar e projetar um sistema de negociação automatizado, como traduzir esse design para o código que seu computador irá entender, como testar seu plano para garantir um desempenho ótimo e, finalmente, como colocar seu sistema em uso.

No comments:

Post a Comment